
How to use the flexibility of
AMDP along with effectiveness
of CDS view

HANA And Code Pushdown Technique Using Top-down
Approach

Some factors which may result in choosing CDS view over
AMDP

Few factors which may influence the decision while choosing between
AMDP over CDS view:

As SAP is moving towards code push down technique using top-down approach, both CDS views and
AMDP are very powerful tools to achieve this framework. As both CDS view and AMDP have their own
pros and cons, choosing one of these is governedby the business requirement as well involved
landscape.

In AMDP, we can call one
function inside the other, it is
helpful in returning multiple
result set on complex logics.
Whereas, CDS is dedicated
for single set of logic and
return only one result set..

Ability to reuse the SAP
HANA database artifact in
CDS view.

CDS views can be directly consumed by
other SAP products such as SAC, BODS, BI
etc. to fetch data from SAP business suite
database layer.

CDS can be exposed as OData Service which
can then be used even by non-SAP systems
to fetch data from SAP business suite
database layer.

It has more advanced
features like Associations and
Annotations in CDS view.

Client handling feature in
CDS view.

CDS views can be created
to read and process data at
DB layer. Whereas AMDP
can be created to process
and modify data at DB layer.

AMDP is used to work with
stored procedures, which
further go to HANA DB
layer and execute that.
This functionality can’t be
achieved by Open SQL and
CDS.

As mentioned above, it’s a very common scenario these days that limit fetching data from
SAP database layer using only CDS view but the business requirement is so complex that
the coding flexibility of AMDP is sorely missed.

However, SAP has provided tools to handle such scenarios as well. To address this
restriction and to provide power of AMDP to CDS views, SAP has provided ABAP CDS
Table function.

What Is ABAD CDS Table Function?

Real world scenario:

A typical CDS would view looks like this:

ABAP CDS table functions define table functions that are implemented natively on the database and
can be called in CDS.

A CDS table function is defined using the ABAP CDS statement DEFINE TABLE FUNCTION and can
be used as the data source in Open SQL read statements.

This implementation is done within an AMDP method of an AMDP class and is managed as an AMDP
function by the AMDP framework in the database system.

Let’s take a look at real world example to better understand how to create/define a Table function and
how to use it handle complex logic in CDS view with quite an ease.

The requirement is to fetch Order details from “SAP Retail business suite (also known as CAR)” tables
where field “Order Timestamp” is between date passed as parameter upto next 45 days.

@AbapCatalog.sqlViewName: 'ZIORDPLAN2'
@AbapCatalog.compiler.compareFilter: true
@AbapCatalog.preserveKey: true
@AccessControl.authorizationCheck: #CHECK
@EndUserText.label: 'Order plan report'
define view ZCDS_I_ORD_PLAN_REP2
with parameters
p_date : datum
as select from /dmf/ordpln_itm as a
left outer join /dmf/prod_ext_xr as b on a.prod_id = b.prod_id
left outer join /dmf/loc_ext_xr as c on a.locto = c.loc_id
left outer join /dmf/opln_trcopi as d on a.orderplanitemuuid = d.orderplanitemuuid
left outer join /dmf/opln_trcitm as e on a.orderplanitemuuid = e.orderplanitemuuid
and e.is_selected = 'X'
left outer join /xrp/c_rop_ogmda as f on a.orderplanitemuuid = f.orderplanitemuuid

{
a.orderplanitemstatus,
a.orderdatetime,
a.deliverydatetime,
a.order_quantity_proposed,
b.ext_prod_id,
c.ext_loc_id,
d.stock_avail_tstmp_qty,
d.sales_fcst_demand_period,
d.standard_deviation_dmnd_period,
e.lost_sales_qty,
e.inventory_eop_qty,
f.opengoodsmovementquantity
}

Table Function definition

Where

Focus on the Yellow highlighted section. Here the field “orderdatetime” has datatype “timestamp” and
we have to fetch all records between “p_date” (parameter of CDS view having data type
YYYYMMDD) and (p_date + 45 days). Just look how complex the code has become just to fetch this
simple requirement.

Alternatively, if we use AMDP capabilities of CDS Table Function to meet the same requirement, the
coding become way simpler without sacrificing the performance: -

A typical Table Function definition to replicate above CDS view business logic:

@EndUserText.label: 'Order plan report using table function.'
@ClientHandling.type: #CLIENT_DEPENDENT
@ClientHandling.algorithm: #SESSION_VARIABLE
define table function ZUTL_ORD_PLAN_TABLE_FUNCTION
 with parameters
 p_date : abap.dates,
 @Environment.systemField: #CLIENT
 p_client : abap.clnt
returns
{
Key client : abap.clnt;
key ext_prod_id : /DMF/ext_prod_id;
key ext_loc_id : /dmf/ext_location_id;
orderplanitemstatus
orderdatetime
deliverydatetime
order_quantity_proposed
stock_avail_tstmp_qty
sales_fcst_demand_period
standard_deviation_dmnd_period : /dmf/stdv_demand_period; : /dmf/kpi_lost_sales_qty;
lost_sales_qty : /dmf/kpi_inventory_eop_qty;
inventory_eop_qty : /dmf/kpi_inventory_eop_qty;
OpenGoodsMovementQuantity : /dmf/goods_movement_open_qty;
}

a.orderdatetime between dats_tims_to_tstmp($parameters.p_date, '000000',
abap_system_timezone($session.client, 'NULL'), $session.client, 'NULL') and
dats_tims_to_tstmp(DATS_ADD_DAYS($parameters.p_date, 45, 'INITIAL'), '000000',
abap_system_timezone($session.client, 'NULL'), $session.client, 'NULL')

and(
 a.orderplanitemstatus = '00'
or a.orderplanitemstatus = '20'
or a.orderplanitemstatus = '25'
or a.orderplanitemstatus = '26'
)

Table Function implementation (Class implementing the table
function)

It looks similar to a CDS view with the difference being logic to fetch data is implemented by an
AMDP class (highlighted using yellow above).

Let us now look at the implementation which is in the method of an AMDP class:

CLASS zcl_order_plan_report IMPLEMENTATION.
 METHOD get_plan_report BY DATABASE FUNCTION
 FOR HDB LANGUAGE SQLSCRIPT
 USING /dmf/ordpln_itm
 /dmf/prod_ext_xr
itab1 = SELECT
a.mandt,
b.ext_prod_id,
c.ext_loc_id,
a.orderplanitemstatus,
a.orderdatetime,
a.deliverydatetime,
a.order_quantity_proposed,
/dmf/loc_ext_xr
/dmf/opln_trcopi
/dmf/opln_trcitm
/xrp/c_ropi_demand_open_gm_agg.

 implementedby method
zcl_order_plan_report=>get_plan_report;

declare lv_date_from date;
 declare lv_date_to date;
 declare lv_date_to_n nvarchar(8);
 declare lv_datetime_from dec(15);
 declare lv_datetime_to dec(15);
 lv_date_from = p_date;
 lv_date_to = add_days(lv_date_from, 45);
 lv_date_to_n = to_dats(lv_date_to);
 lv_datetime_from = concat(p_date, '000000');
 lv_datetime_to = concat(lv_date_to_n, '000000');

itab1 = SELECT
a.mandt,
b.ext_prod_id,
c.ext_loc_id,
a.orderplanitemstatus,
a.orderdatetime,

Focus on the yellow highlighted section. We can write code within AMDP class using native HANA
SQL language similar to our ABAP language thereby making data manipulations so very simple. Also,
unlike CDS, you can debug this to rectify the bug!!

This table function can be consumed in a CDS view just like you would consume any transparent table
(see yellow highlighted section):

a.deliverydatetime,
a.order_quantity_proposed,
d.stock_avail_tstmp_qty,
d.sales_fcst_demand_period,
d.standard_deviation_dmnd_period,
e.lost_sales_qty,
e.inventory_eop_qty,
f.OpenGoodsMovementQuantity
from "/DMF/ORDPLN_ITM" as a
left outer join "/DMF/PROD_EXT_XR" as b on a.prod_id = b.prod_id
left outer join "/DMF/LOC_EXT_XR" as c on a.locto = c.loc_id
left outer join "/DMF/OPLN_TRCOPI" as d on a.orderplanitemuuid = d.orderplanitemuuid
left outer join "/DMF/OPLN_TRCITM" as e on a.orderplanitemuuid = e.orderplanitemuuid
 and e.is_selected = 'X'
left outer join "/XRP/C_ROPI_DEMAND_OPEN_GM_AGG" as f on a.orderplanitemuuid =
f.orderplanitemuuid
where

and(
a.orderplanitemstatus = '00'
or a.orderplanitemstatus = ‘20’
or a.orderplanitemstatus = ‘25’
or a.orderplanitemstatus = ‘26’
);
RETURN SELECT
mandt AS client,
ext_prod_id,
ext_loc_id,
orderplanitemstatus,
orderdatetime,
deliverydatetime,
order_quantity_proposed,
stock_avail_tstmp_qty,
sales_fcst_demand_period,
standard_deviation_dmnd_period,
lost_sales_qty,
inventory_eop_qty,
OpenGoodsMovementQuantity
FROM :itab1;

ENDMETHOD.

ENDCLASS.

a.orderdatetime between lv_datetime_from and lv_datetime_to

This way, we can implement complex business logic using the flexibility of AMDP without
compromising on the benefits of CDS view utility. For detail discussion and questions, please reach
out to our team at corp@acnsol.com.

@AbapCatalog.sqlViewName: 'ZCORDPLAN3'
@AbapCatalog.compiler.compareFilter: true
@AbapCatalog.preserveKey: true
@AccessControl.authorizationCheck: #CHECK
@EndUserText.label: 'Order plan report using table function'
define view ZCDS_C_ORD_PLAN_REP3
as select from ZUTL_ORD_PLAN_TABLE_FUNCTION(p_date: $session.system_date, p_client:
$session.client)
{
 ext_prod_id,
 ext_loc_id,
 orderplanitemstatus,
 orderdatetime,
 deliverydatetime,
 orderquantityunit,
 @Semantics.quantity.unitOfMeasure: 'orderquantityunit'
 order_quantity_proposed,
 @Semantics.quantity.unitOfMeasure: 'orderquantityunit'
 stock_avail_tstmp_qty,
 @Semantics.quantity.unitOfMeasure: 'orderquantityunit'
 lost_sales_qty,
 @Semantics.quantity.unitOfMeasure: 'orderquantityunit'
 OpenGoodsMovementQuantity,
 @Semantics.quantity.unitOfMeasure: 'orderquantityunit'
 inventory_eop_qty
 }

The Iconic Corenthum
1st & 2nd floor, Sector
62, Noida-201301

7116 252nd Avenue NE
Redmond, WA 98053

609 Lanseria Corporate
Estate, Falcon Lane,
Lanseria, Gauteng

USA Noida South Africa

© Copyright 2023 Accrete Consulting Solutions

